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times, the data bus is held in a high-impedance state. This works as expected, because the value Z
can be overridden by another assignment. In simulation, the other assignment may come from a test
bench that emulates the CPU’s operation. In synthesis, the software properly recognizes this ar-
rangement as inferring a tri-state bus. The continuous assignment takes advantage of Verilog’s con-
ditional operator, ? : , which serves an if…else function. When the logical expression before the
question mark is true, the value before the colon is used. Otherwise, the value after the colon is used.
A bidirectional port is declared using the Verilog 

 

inout

 

 keyword in place of 

 

input 

 

or 

 

output

 

. The syn-
chronous version of the read logic is very similar to the asynchronous version, except that the out-
puts are first registered before being used in the tri-state assignment.

Interrupt control registers are implemented by support logic when the number of total interrupt
sources in the system exceeds the CPU’s interrupt handling capacity. Gathering multiple interrupts
and presenting them to the CPU as a single interrupt signal can be as simple as logically ORing mul-
tiple interrupt signals together. A somewhat more complex scheme, but one with value, is where in-
terrupts can be selectively masked by the CPU, and system-wide interrupt status is accumulated in a
single register. This gives the CPU more control over how it gets interrupted and, when interrupted,
provides a single register that can be read to determine the source of the interrupt. Such a scheme
can be implemented with two registers and associated logic: a read/write interrupt mask register and
a read-only interrupt status register. Each pair of bits in the mask and status registers corresponds to
a single interrupt source. When an interrupt is active, the corresponding bit in the status register is
active. However, only those interrupt sources whose mask bits have been cleared will result in a
CPU interrupt. At reset, the mask register defaults to 0xFF to disable all interrupts. Figure 10.9
shows a Verilog implementation of interrupt control as an extension of the previous example. Syn-
chronous registers are assumed here, but asynchronous logic is easily adapted.

Aside from the registers themselves, the main function of the interrupt control logic is imple-
mented by the bit-wise ORing and reduction AND of the interrupt mask bits and the external inter-
rupt signals. Verilog’s | operator is a bit-wise OR function in contrast to the || logical OR function.
When two equal-size vectors are bit-wise ORed, the result is a single vector of the same size wherein
each bit is the OR of the corresponding pair of bits of the operands. This first step disables any active
interrupts that are masked; per DeMorgan’s law, an OR acts as an active-low AND function. The sec-
ond step is a reduction AND as indicated by the unary & operator. Similar to OR, & is the bit-wise
version of &&. Invoking & with a single operand makes it a reduction operator that ANDs together
all bits of a vector and generates a single output bit. AND is used because the interrupt polarities are
active-low. Therefore, if any one interrupt is asserted (low), the reduction AND function will gener-
ate a low output. Per DeMorgan’s law once again, an AND acts as an active-low OR function.

Timers are often useful structures that can periodically interrupt the CPU to invoke a time-critical
interrupt service routine, enable the CPU to determine elapsed time, or trigger some other event in
hardware. It is common to find timers implemented in certain CPU products such as microcontrol-
lers. Sometimes, however, it becomes necessary to implement a custom timer in support logic. One
such example is presented here with a fixed prescaler and an eight-bit counter with an eight-bit con-
figurable terminal count value. The prescaler is used to slow down the timer so that it can interrupt
the CPU over longer periods of time. For the sake of discussion, let’s assume that the CPU is running
at a frequency of 10 MHz and that the timer granularity should be 1 ms. Therefore, the prescaler
should count from 0 to 9,999 to generate a 1-ms tick when running with a 100-ns period. A Verilog
implementation of such a timer is shown in Fig. 10.10 without the associated read/write logic al-
ready presented in detail. A 14-bit prescaler is necessary to represent numbers from 0 to 9,999. It is
assumed that the terminal count register, TermCount, is implemented elsewhere as a general read/
write register.

When the timer rolls over, it asserts TimerRollOver for one CpuClk cycle to trigger whatever
logic is desired by the application. If the trigger event is a CPU interrupt, the logic should create a

 

-Balch.book  Page 232  Thursday, May 15, 2003  3:46 PM



 

Logic Design and Finite State Machines 233

 

“sticky” version of TimerRollOver that does not automatically get cleared by hardware. Rather, it is
sticky because, once set by hardware, the bit will retain its state until explicitly cleared by software.
This provides an arbitrarily long time for software to respond to the interrupt assertion, read the in-
terrupt status register to detect the timer roll-over event, and then clear the sticky bit. Without the
sticky bit, software would have no chance of catching a pulse that is only a single cycle in width.

 

10.3 CLOCK DOMAIN CROSSING

 

Some logic design tasks involve exchanging information between logic running on unrelated clocks.
When multiple independent clock domains exist in a system, there is no guaranteed skew or phase
relationship between the various clocks. Synchronous timing analysis dictates that a flop’s setup and
hold times must be met to ensure reliable capture of the data presented to it. Yet it is impossible to
guarantee proper setup and hold times when the source flop’s clock has no relationship to the desti-
nation flop’s clock.

always @(Addr[3:0] or StatusInput[7:0] or ControlReg[7:0] or IntSel 
                  or ISR[7:0] or IMR[7:0]) 
begin 
 case (Addr[3:0]) // read multiplexer 
   4´h0    : ReadData[7:0] = StatusInput[7:0]; // external input pins 
   4´h1    : ReadData[7:0] = ControlReg[7:0]; 
   4´h2    : ReadData[7:0] = ISR[7:0];  // interrupt status
   4´h3    : ReadData[7:0] = IMR[7:0];  // interrupt mask 
   default : ReadData[7:0] = 8´h0; // alternate means to prevent latch 
 endcase 

 ControlRegSel  = 1´b0;  // default inactive value 
 IMRSel         = 1´b0; 

 case (Addr[3:0]) // select signal only needed for writeable registers 
   4´h1 : ControlRegSel = IntSel; 
   4´h3 : IMRSel        = IntSel; 
 endcase 

end 

// Interrupt gathering 

always @(IMR[7:0] or ExtInt_[7:0]) 
begin 
 ISR[7:0] = ExtInt_[7:0]; // reflect status of external signals 
 CpuInt_  = &(IMR[7:0] | ExtInt_[7:0]); // reduction AND 

end 

// Write logic 

always @(posedge CpuClk) 
begin 
 if (!Reset_) 
   IMR[7:0] <= 8´hff; // mask all interrupts on reset 
 else if (IMRSel && !Wr_) 
   IMR[7:0] <= CpuData[7:0];  

end 

FIGURE 10.9 Interrupt control logic.
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